108 research outputs found

    Collaborating with Users in Proximity for Decentralized Mobile Recommender Systems

    Full text link
    Typically, recommender systems from any domain, be it movies, music, restaurants, etc., are organized in a centralized fashion. The service provider holds all the data, biases in the recommender algorithms are not transparent to the user, and the service providers often create lock-in effects making it inconvenient for the user to switch providers. In this paper, we argue that the user's smartphone already holds a lot of the data that feeds into typical recommender systems for movies, music, or POIs. With the ubiquity of the smartphone and other users in proximity in public places or public transportation, data can be exchanged directly between users in a device-to-device manner. This way, each smartphone can build its own database and calculate its own recommendations. One of the benefits of such a system is that it is not restricted to recommendations for just one user - ad-hoc group recommendations are also possible. While the infrastructure for such a platform already exists - the smartphones already in the palms of the users - there are challenges both with respect to the mobile recommender system platform as well as to its recommender algorithms. In this paper, we present a mobile architecture for the described system - consisting of data collection, data exchange, and recommender system - and highlight its challenges and opportunities.Comment: Accepted for publication at the 2019 IEEE 16th International Conference on Ubiquitous Intelligence and Computing (IEEE UIC 2019

    A cognitive task analysis of a visual analytic workflow: Exploring molecular interaction networks in systems biology

    Get PDF
    Background: Bioinformatics visualization tools are often not robust enough to support biomedical specialists’ complex exploratory analyses. Tools need to accommodate the workflows that scientists actually perform for specific translational research questions. To understand and model one of these workflows, we conducted a case-based, cognitive task analysis of a biomedical specialist’s exploratory workflow for the question: What functional interactions among gene products of high throughput expression data suggest previously unknown mechanisms of a disease? Results: From our cognitive task analysis four complementary representations of the targeted workflow were developed. They include: usage scenarios, flow diagrams, a cognitive task taxonomy, and a mapping between cognitive tasks and user-centered visualization requirements. The representations capture the flows of cognitive tasks that led a biomedical specialist to inferences critical to hypothesizing. We created representations at levels of detail that could strategically guide visualization development, and we confirmed this by making a trial prototype based on user requirements for a small portion of the workflow. Conclusions: Our results imply that visualizations should make available to scientific users “bundles of features” consonant with the compositional cognitive tasks purposefully enacted at specific points in the workflow. We also highlight certain aspects of visualizations that: (a) need more built-in flexibility; (b) are critical for negotiating meaning; and (c) are necessary for essential metacognitive support

    Systematic analysis of a novel human renal glomerulus-enriched gene expression dataset.

    Get PDF
    Glomerular diseases account for the majority of cases with chronic renal failure. Several genes have been identified with key relevance for glomerular function. Quite a few of these genes show a specific or preferential mRNA expression in the renal glomerulus. To identify additional candidate genes involved in glomerular function in humans we generated a human renal glomerulus-enriched gene expression dataset (REGGED) by comparing gene expression profiles from human glomeruli and tubulointerstitium obtained from six transplant living donors using Affymetrix HG-U133A arrays. This analysis resulted in 677 genes with prominent overrepresentation in the glomerulus. Genes with 'a priori' known prominent glomerular expression served for validation and were all found in the novel dataset (e.g. CDKN1, DAG1, DDN, EHD3, MYH9, NES, NPHS1, NPHS2, PDPN, PLA2R1, PLCE1, PODXL, PTPRO, SYNPO, TCF21, TJP1, WT1). The mRNA expression of several novel glomerulus-enriched genes in REGGED was validated by qRT-PCR. Gene ontology and pathway analysis identified biological processes previously not reported to be of relevance in glomeruli of healthy human adult kidneys including among others axon guidance. This finding was further validated by assessing the expression of the axon guidance molecules neuritin (NRN1) and roundabout receptor ROBO1 and -2. In diabetic nephropathy, a prevalent glomerulopathy, differential regulation of glomerular ROBO2 mRNA was found.In summary, novel transcripts with predominant expression in the human glomerulus could be identified using a comparative strategy on microdissected nephrons. A systematic analysis of this glomerulus-specific gene expression dataset allows the detection of target molecules and biological processes involved in glomerular biology and renal disease

    Network analysis of genes regulated in renal diseases: implications for a molecular-based classification

    Full text link
    Abstract Background Chronic renal diseases are currently classified based on morphological similarities such as whether they produce predominantly inflammatory or non-inflammatory responses. However, such classifications do not reliably predict the course of the disease and its response to therapy. In contrast, recent studies in diseases such as breast cancer suggest that a classification which includes molecular information could lead to more accurate diagnoses and prediction of treatment response. This article describes how we extracted gene expression profiles from biopsies of patients with chronic renal diseases, and used network visualizations and associated quantitative measures to rapidly analyze similarities and differences between the diseases. Results The analysis revealed three main regularities: (1) Many genes associated with a single disease, and fewer genes associated with many diseases. (2) Unexpected combinations of renal diseases that share relatively large numbers of genes. (3) Uniform concordance in the regulation of all genes in the network. Conclusion The overall results suggest the need to define a molecular-based classification of renal diseases, in addition to hypotheses for the unexpected patterns of shared genes and the uniformity in gene concordance. Furthermore, the results demonstrate the utility of network analyses to rapidly understand complex relationships between diseases and regulated genes.http://deepblue.lib.umich.edu/bitstream/2027.42/112463/1/12859_2009_Article_3354.pd

    Maintenance of GLUT4 expression in smooth muscle prevents hypertension‐induced changes in vascular reactivity

    Full text link
    Previous studies have shown that expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice and that total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity in hypertension. To demonstrate that the effect of GLUT4 overexpression on vascular responses is dependent on vascular smooth muscle GLUT4 rather than on some systemic effect we developed and tested smooth‐muscle‐specific GLUT4 transgenic mice (SMG4). When made hypertensive with angiotensin II, both wild‐type and SMG4 mice exhibited similarly increased systolic blood pressure. Responsiveness to phenylephrine, serotonin, and prostaglandin F2α was significantly increased in endothelium‐intact aortic rings from hypertensive wild‐type mice but not in aortae of SMG4 mice. Inhibition of Rho‐kinase equally reduced serotonin‐stimulated contractility in aortae of hypertensive wild‐type and SMG4‐mice. In addition, acetylcholine‐stimulated relaxation was significantly decreased in aortic rings of hypertensive wild‐type mice, but not in rings of SMG4 mice. Inhibition of either prostacylin receptors or cyclooxygenase‐2 reduced relaxation in rings of hypertensive SMG4 mice. Inhibition of cyclooxygenase‐2 had no effect on relaxation in rings of hypertensive wild‐type mice. Cyclooxygenase‐2 protein expression was decreased in hypertensive wild‐type aortae but not in hypertensive SMG4 aortae compared to nonhypertensive controls. Our results demonstrate that smooth muscle expression of GLUT4 exerts a major effect on smooth muscle contractile responses and endothelium‐dependent vasorelaxation and that normal expression of GLUT4 in vascular smooth muscle is required for appropriate smooth muscle and endothelial responses.e12299In the smooth muscle of aortae of hypertensive mice, expression of GLUT4 is decreased. Maintenance of aortic smooth muscle GLUT4 expression prevents hypertension‐mediated changes in vasomotor response. These effects include decreasing/preventing endothelial dysfunction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110755/1/phy212299.pd

    Evaluating the Public Climate School, a multi-component school-based program to promote climate awareness and action in students: A cluster-controlled pilot study

    Get PDF
    Introduction: Despite the potential of school-based programs targeting climate awareness and action to support students in addressing the climate crisis and to improve their mental health and well-being, there is limited evidence for their effectiveness. In preparation for a cluster-randomized controlled trial, we assessed the feasibility of evaluating the Public Climate School (PCS), a one-week school program in Germany, and its effects on theory-based behavioral and psychological outcomes. Material and methods: We enrolled 158 students from 11 classes (grades 7–13) into a cluster-controlled pilot study. Four classes were allocated to the waitlist control group and 7 to the intervention group participating in the PCS in November 2021. Using online surveys, we assessed theory-based behavioral and psychological outcomes at baseline and follow-up. Two-level models were used to investigate changes in outcomes. Results: 125 students completed the baseline and follow-up survey (dropout rate: 21 %). For most outcomes we observed no between-group differences, except for pro-environmental communication and engagement (e.g., posting on social media; p=.040) and perceptions of environmental norms (p=.001) in the anticipated direction. Conclusion: This study confirmed the feasibility of evaluating the PCS and provides parameter estimates to guide sample size calculations and study design decisions for future research. Together with recent work on the association between collective action and mental health, the effect of the PCS on pro-environmental communication and engagement highlights the value of examining effects of education for sustainable development programs on student health and linking them to collective action in future work

    Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway

    Get PDF
    Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9
    • 

    corecore